model { for(i in 1:N){ mu_M[i] <- alpha*x[i] M[i] ~ dnorm(mu_M[i],prec1) logit(mu_y[i])<- c*x[i]+beta*M[i] y[i] ~ dbern(mu_y[i]) j1[i]~dunif(0.5,100.5) j2[i]~dunif(0.5,100.5) j3[i]<- round(j1[i]) j4[i]<- round(j2[i]) mu_M1[i] <- alpha*(x[i]+deltax) M1[i] ~ dnorm(mu_M1[i],prec1) logit(mu_y1[i])<- c*(x[i]+deltax)+beta*M1[i] te[i]<-(mu_y1[i]-mu_y[i])/deltax mu_M2[i] <- alpha*(x[j3[i]]) M2[i] ~ dnorm(mu_M2[i],prec1) logit(mu_y2[i])<- c*x[i]+beta*M2[i] mu_M3[i] <- alpha*(x[j4[i]]) M3[i] ~ dnorm(mu_M3[i],prec1) logit(mu_y3[i])<- c*(x[i]+deltax)+beta*M3[i] de[i]<-(mu_y3[i]-mu_y2[i])/deltax ie[i]<-te[i]-de[i] } alpha ~ dnorm(0.0,1.0E-2) beta ~ dnorm(0.0,1.0E-2) c ~ dnorm(0.0,0.05) var1 ~ dgamma(1,0.1) prec1 <-1/var1 }